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We analyze how the transient dynamics of large dynamical systems in the vicinity of a stationary point,
modeled by a set of randomly coupled linear differential equations, depends on the network topology. We
characterize the transient response of a system through the evolution in time of the squared norm of the state
vector, which is averaged over different realizations of the initial perturbation. We develop a mathematical
formalism that computes this quantity for graphs that are locally tree-like. We show that for unidirectional
networks the theory simplifies and general analytical results can be derived. For example, we derive analytical
expressions for the average squared norm for random directed graphs with a prescribed degree distribution.
These analytical results reveal that unidirectional systems exhibit a high degree of universality in the sense
that the average squared norm only depends on a single parameter encoding the average interaction strength
between the individual constituents. In addition, we derive analytical expressions for the average squared norm
for unidirectional systems with fixed diagonal disorder and with bimodal diagonal disorder. We illustrate these
results with numerical experiments on large random graphs and on real-world networks.

I. INTRODUCTION

Networks of interacting constituents appear in the study of
systems as diverse as ecosystems [1–3], neural networks [4–
8], financial markets [9–12], and signaling networks [13–15];
for more examples see Refs. [16, 17]. Traditionally, a strong
focus has been put on whether such systems are stable at long
time scales [18, 19] because stability is often associated to
functionality, e.g., stable ecosystems or economies [20]. Dif-
ferently, the short-time transient response of networked sys-
tems to perturbations is less understood despite being impor-
tant for applications: for example, neuroscientists administer
magnetic stimulations to the brain and observe distinct dy-
namical responses of electrical activity, which capture differ-
ent connectivity states of the underlying network of neurons
[21]; in ecological systems, the asymptotic dynamics does not
capture the typical time scales accessible in experiments [22–
26]; in the context of epidemics, the initial time window be-
fore vaccinations become available, makes a crucial difference
in limiting the extent of the outbreak [27]. A relevant ques-
tion is thus how network topology determines the early-time
dynamics of large systems. For example: (i) how long does
a stable system take to return to its stationary state as a func-
tion of the network topology and interaction strength among
its constituents, and (ii) how long does it take to realize that
a seemingly stable system is unstable after all, and disaster is
looming?

We describe the state of a large dynamical system at time
t with N real-valued variables ζi(t). For example, ζi(t) may
represent the abundance of species i in an ecosystem or the
activity of the i-th neuron in the brain at time t. We assume
that the system evolves according to a system of first-order
equations

∂tζi = fi(ζ) , (1)

for i = 1, . . . , N . Although the functions fi are arbitrary, the
dynamics can be linearized close to a stationary point ζ? for

which fi(ζ?) = 0 to yield [28, 29]

dyi(t)

dt
=

N∑
k=1

Aikyk(t) , (2)

where the N -dimensional vector

y(t) = ζ(t)− ζ? (3)

encodes deviations from the stationary state and

Aik =

(
∂fi
∂ζk

) ∣∣∣
ζ?

(4)

are the entries of the corresponding Jacobian matrix A.
The magnitude of the deviation vector y(t) as a function

of time is captured by the squared norm |y(t)|2. In order to
grasp the dynamical response to generic initial perturbations,
we consider the average

SN (t;A) = 〈|y(t)|2〉 (5)

over initial states y(0) uniformly drawn from the sphere
|y(0)| = α, where α quantifies the strength of the initial kick;
without loss of generality we set α = 1. In addition, to cap-
ture the properties of a typical dynamical system, we take A
to be a random matrix of pairwise interactions [3, 18, 30], and
we further average the squared norm over the disorder

SN (t) = 〈|y(t)|2〉 . (6)

Since we will be interested in large systems, we take the limit

S(t) = lim
N→∞

SN (t) . (7)

If

lim
t→∞

S(t) = 0 ( lim
t→∞

S(t) =∞) , (8)

then we say that a system is transiently (un)stable. Note that
transient stability is different from asymptotic stability, which
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is governed by the sign of the real part of the leading eigen-
value of A, see e.g. Refs. [3, 18, 31].

The observables SN (t) and S(t) are the main objects of
interest. The quantity S(t) describes the transient dynam-
ics of an infinitely large dynamical system and can be com-
puted analytically for a large and important class of systems,
as we show in this paper. On the other hand, SN (t) cap-
tures the dynamics of systems at finite N and is the quantity
that is experimentally measurable. There exists a crossover
time t?(N) such that for times t < t?(N) theory and ex-
periment are in correspondence, i.e. SN (t) ≈ S(t), while
for t � t?(N) theory and experiment are in disagreement,
i.e. SN (t)� S(t). The discrepancy between S(t) and SN (t)
at large t is most evident for transiently stable systems, for
which limt→∞ SN (t) =∞ but limt→∞ S(t) = 0.

For transiently stable systems, where SN (t) has a non-
monotonic behavior, we define the crossover time by

t?(N) = mint≥0SN (t) . (9)

The crossover time t?(N) defined by Eq. (9) increases with
N and diverges for large N [seemingly as a power law, see
Appendix A for a detailed discussion]. For the reasons above,
S(t) is a good measure of the transient dynamics of large dy-
namical systems.

So far, the quantity S(t) has only been computed for sys-
tems with fully connected topology [32–36], namely for

Aij = −µδij +Xij/
√
N , (10)

where the Xij are independent and identically distributed
(i.i.d.) entries with zero mean and finite moments. In this case,

S(t) = e−2µtI0(2ρt)
t→∞∼ e2t(ρ−µ)

√
4πρt

, (11)

where ρ is the spectral radius of the matrix X/
√
N and I0(x)

is the modified Bessel function of the first kind. Since S(t)
only depends on the spectral radius of the matrix X , it enjoys
a high degree of universality.

We aim to study how S(t) depends on the topology of a
network, for which it is necessary to go beyond the fully con-
nected paradigm. We assume that A is the adjacency matrix
of a weighted graph that is locally tree-like,

Aij = −Diδij + CijJij , (12)

where Di ∈ R+ are the diagonal decay rates, the Jij ∈ R are
the coupling strengths, and the Cij ∈ {0, 1} are the entries of
the adjacency matrix of a locally tree-like, directed and simple
graph. We say that a sequence of graphs is locally tree-like if
in the limit N → ∞ the finite neighborhood of a randomly
selected node is with probability one a tree [37, 38]; loosely
speaking, a graph is locally tree-like if it is large and does not
contain small cycles. In this paper, we develop a mathematical
method to compute S(t) for the model given by Eq. (12) under
the sole assumption that the graph represented by C is locally
tree-like.

We further illustrate the general mathematical formalism
on a canonical class of random directed graphs, namely, the

ensemble of adjacency matrices of weighted random graphs
with a prescribed degree distribution [17, 31, 39–41]. These
random graphs are used to model real-world systems, such as,
the Internet [39, 64, 65], neural networks [66] and other high-
dimensional systems [16, 17, 40]. In this ensemble, the matrix
A in Eq. (12) is defined as follows:

• theDi are i.i.d. taken from a probability density pD(x);

• the Jij are i.i.d. random variables with probability den-
sity pJ(x);

• the Cij are the entries of the adjacency matrix of a
random (directed) graph with a prescribed joint degree
distribution pdeg(kin, kout) of in-degrees kin and out-
degrees kout. In addition, we assume that the degree
distribution factorizes as

pdeg(kin, kout) = pdeg(kin)pdeg(kout) . (13)

The spectral properties of this ensemble have been studied in
detail in Refs. [31, 41–43] and the asymptotic stability of dy-
namical systems described by this ensemble has been studied
in Ref. [31]. Here, we characterize the transient response to a
random perturbation for dynamical systems on random graphs
with a prescribed degree distribution by deriving analytical
expressions for S(t).

This analytical progress is made possible because (i) our
general theory simplifies for locally oriented (or unidirec-
tional) networks (see Section III C for a precise statement),
and (ii) directed random graphs with a prescribed degree
distribution are – with high probability – locally oriented
[37, 38].

Remarkably, we find that S(t) is universal for directed ran-
dom graphs with a prescribed degree distribution, in the sense
that it only depends on the distribution pJ(x) and the degree
distribution pdeg(k) through a single parameter (see our main
formula (60)). On the other hand, the dependence on pD is
non-universal.

We compare the derived analytical results for S(t) with nu-
merical results for SN (t) on random graphs and on real-world
graphs. We find that S(t) is in excellent agreement with SN (t)
as long as t < t?(N), where t?(N) is a timescale that di-
verges with N . For t � t?(N), it holds that SN (t;A) ∼
e2Re[λ1(A)]t, with λ1(A) the eigenvalue of A with the largest
real part, and as a consequence, S(t)� SN (t).

The plan of the paper is as follows. In Sec. II, we express
S(t) as a contour integral over the two-point correlator of a
random matrix ensemble, effectively mapping a dynamical
systems problem onto a random matrix theory problem. In
Sec. III, we develop a mathematical formalism to compute
the two-point correlator, and thus also S(t), on tree or lo-
cally tree-like graphs. In Sec. IV, we consider directed ran-
dom graphs with a prescribed joint degree distribution and we
derive for this ensemble analytical expressions for S(t). In
Sec. V, we compare the obtained analytical expressions for
infinitely large graphs with numerical experiments on random
graphs of finite size and on real-world graphs. In Sec. VI, we
discuss the obtained results and present an outlook for future
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research. In Appendix A, we analyze how t?(N) depends on
N . In Appendix B, we compute a contour integral that ap-
pears in our calculations. In Appendix C, we make a study of
the spectra of random graphs with a prescribed degree distri-
bution and a bimodal distribution of diagonal matrix entries,
and in Appendix D, we present numerical results for random
graphs with power-law degree distributions.

II. MAPPING ONTO A RANDOM MATRIX PROBLEM

In this section, we derive the formula

SN (t;A) =

"
γ

dzdw et(z+w)

N(2πi)2
WA(z, w) , (14)

which expresses the dynamical response SN (t;A) as a con-
tour integral of the two-point correlator

WA(z, w) = Tr

[
1

z1−AT
1

w1−A

]
(15)

over a closed counterclockwise-oriented contour γ that en-
closes all eigenvalues ofA. The symbol 1 denotes the identity
matrix of size N .

Analogously, we obtain

S(t) =

"
γ

dzdw et(z+w)

(2πi)2
W(z, w) , (16)

where

W(z, w) = lim
N→∞

1

N
Tr [(z1−AT )−1(w1−A)−1] (17)

is the average two-point correlator.
Formulae (14)-(17) provide a recipe to compute S(t): if

we obtain an expression for the two-point correlator (17) of
a random matrix ensemble, then S(t) follows readily from
evaluating the contour integral (14). Note that we only need
to compute W(z, w) for values z, w that lie outside the con-
tinuous part of the spectrum.

In order to obtain (14), we first express the solution of
Eq. (2) as

y(t) = eAty(0) , (18)

and therefore

|y(t)|2 = yT (0)eA
T teAty(0) . (19)

Since |y(0)|2 = 1, there exists a matrixO in the the orthog-
onal group O(N) (the group of isometries of the N -sphere)
such that

y(0) = Oe1 , (20)

where

e1 = (1, 0, 0, . . . , 0)T . (21)

Taking the average of (19) with respect to all initial conditions
y(0) selected uniformly at random on the unit sphere is thus
equivalent to taking the average of the following expression

eT1 O
T eA

T teAtOe1 (22)

with respect to the uniform (Haar) measure on the orthogonal
group. Using that [44]

〈OijOkl〉 =
1

N
δikδjl , (23)

and Eqs. (22) and (5), we obtain

SN (t;A) =
1

N
Tr eA

T teAt . (24)

We use the Dunford-Taylor formula (see [45], Eq. (5.47)
on page 44) to express the right hand side of Eq. (24) as a
contour integral. Let f be an analytic function on the complex
plane. The Dunford-Taylor formula states that

f(A) =
1

(2πi)

˛
γ

f(z)

z −A
dz , (25)

where γ is a closed counterclockwise-oriented contour that
encompasses a region of the complex plane that contains all
eigenvalues of A. Using (25) in (24), we readily obtain Eqs.
(14) and (15).

The quantity SN (t;A) is determined by both the statistics
of eigenvalues and eigenvectors of A. This is most clearly
seen by considering the special case where A is diagonaliz-
able. In this case, A can be written in its canonical form

A =

N∑
j=1

λj |rj〉〈`j | , (26)

where λj are its eigenvalues, and |rj〉 and 〈`j | form a bi-
orthonormal set of right and left eigenvectors. Plugging this
canonical form of A in Eq. (24) we obtain

SN (t;A) =
1

N

∑
j,k

Õjke
t(λ?j+λk) , (27)

where

Õjk = 〈`k|`j〉〈rj |rk〉 (28)

encode the eigenvectors overlaps [36]. Additionally, if A is a
normal matrix ([A,AT ] = 0), then 〈rj |rk〉 = 〈lk|lj〉 = δjk,
and

〈|y(t)|2〉 =
1

N

N∑
j=1

e2t Re[λj ] . (29)

Therefore, the non-orthogonality of eigenvectors is a primary
source of transient behavior, since the eigenmodes can inter-
fere constructively to deliver an initial amplification of the sig-
nal well before it eventually dies out [46–54].
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Eq. (14) reduces the computation of S(t) to a computation
of the average two-point correlator W (z, w). Although the
one-point correlator

WA(z) = Tr
1

z1−AT
(30)

of sparse random graphs has been studied extensively in
Ref. [31, 41–43], to our knowledge, the two-point correla-
tor has not been considered before. In the next section, we
show how to compute the two-point correlator WA for tree
matrices, and in the subsequent section we compute W for the
canonical model of random graphs with a prescribed degree
distribution.

III. TREE GRAPHS

In this section, we present a mathematical method to
compute the two-point correlator WA(z, w), and thus also
SN (t;A), under the sole assumption that the graph repre-
sented by Cij is a tree.

The mathematical method we employ is based on two ideas:
the size-doubling trick presented in the first subsection, and a
recursive implementation of the Schur formula, presented in
the second subsection. In a third subsection we discuss how
the mathematical formalism simplifies for oriented graphs.
We say that a graph is oriented if

CijCji = 0 (31)

for all pairs (i, j).

A. Size doubling trick

We use the following identity

WA(z, w) = −bTr11B
−1 , (32)

which expresses the trace of

1

z1−AT
1

w1−A
(33)

in terms of the block trace of the inverse of the matrix

B =

(
0 w1−A

z1−AT 1

)
. (34)

The block trace bTr11 of a 2N × 2N matrix X is defined by

bTr11X =

N∑
j=1

[X]j,j . (35)

Since B is a matrix of size 2N × 2N and A is a matrix of
size N ×N , we call this the size-doubling trick, which bears
some similarity with the Hermitization method [55, 56] in
non-Hermitian random matrix theory.

In order to proceed, we note that the block trace formula
in (32) is similar to the block trace formula for the spectral
density of a sparse graph, see Eq. (57) in Ref. [41]. In the next
subsection we will exploit this mathematical similarity.

B. Recursion relations

We derive a set of recursion relations that will provide us
with the diagonal elements [B−1]j,j . The recursions can be
closed using that A is the adjacency matrix of a (weighted)
tree. In particular, we use the following property. Let A(j)

be the matrix obtained from A by removing the j-th row and
column; A(j) is the adjacency matrix of the so-called cavity
graph obtained by removing the j-th node from the original
graph [57–59]. It then holds that A(j) is a forest of |∂j | iso-
lated trees, where we have used the notation

∂j = {i : Cij 6= 0 or Cji 6= 0} (36)

for the neighborhood of j and |∂j | is the number of elements in
∂j . We use the Schur inversion formula to derive the recursion
relations. However, first we need to define the quantities that
appear in the recursion, which requires a reshuffling of the
elements of B.

1. Preliminary ordering of matrix elements

The matrix B can be seen as a replicated version of the
original matrix A, where each node of the original graph has
two replicas, one with label i and the other with label i + N
(i = 1, . . . , N ), which are located therefore far apart in the
matrix B. Therefore, we operate on the 2N ×2N matrix B to
create a new matrix that preserves the same connectivity struc-
ture of the original graph (encoded in C). This is achieved by
bundling together labels that refer to the same node.

More precisely, we permute the rows and columns of the
matrix B. The permutation we perform defines the matrix B̃,
whose entries are assigned according to the following opera-
tions:

Bi,j →


B̃2i−1,2j−1, if 1 ≤ i, j ≤ N,
B̃2(i−N),2j−1, if N + 1 ≤ i ≤ 2N, 1 ≤ j ≤ N,
B̃2i−1,2(j−N), if 1 ≤ i ≤ N,N + 1 ≤ j ≤ 2N,

B̃2(i−N),2(j−N), if N + 1 ≤ i, j ≤ 2N .
(37)

This permutation is performed through a similarity transfor-
mation B̃ = PBP , where P is a suitably defined permutation
matrix.

We then obtain the permuted matrix B̃ which consists of
diagonal 2× 2 blocks (labelled using the sans-serif font)

B̃ii =

(
0 w −Aii

z −Aii 1

)
:=

(
0 w
z 1

)
− Aii , (38)

and off-diagonal blocks of the form

B̃ij =

(
0 −Aij
−Aji 0

)
:= −Aij , (39)

for i, j = 1, . . . , N . Note that now the matrix B̃ is a block
matrix (formed by 2 × 2 blocks) that inherits the same con-
nectivity structure as the matrix A (or C), since elements of
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A referring to the same node - which were located far apart in
the matrix B - are now bundled together.

The elements of B−1, which we need in Eq. (32), are re-
lated to the elements of B̃−1 in the following way:

B̃−1 = (PBP )−1 ⇒ PB̃−1P = B−1 , (40)

since a permutation matrix is an orthogonal transformation.
Moreover, the block trace needed in Eq. (32) reads

bTr11B
−1 = bTr11[PB̃−1P ] =

=

N∑
j=1

[PB̃−1P ]j,j =

N∑
j=1

[B̃−1]2j−1,2j−1 , (41)

where in the first line we used Eq. (40), and in the second line
the fact that the permutation matrix P maps indices j onto
2j − 1 if 1 ≤ j ≤ N .

Therefore, the objects of interest are now the elements
[B̃−1]2j−1,2j−1 of the inverse matrix of B̃.

Defining the 2× 2 matrices Gj for j = 1, . . . , N as

Gj =

(
[B̃−1]2j−1,2j−1 [B̃−1]2j−1,2j

[B̃−1]2j,2j−1 [B̃−1]2j,2j

)
, (42)

the two-point correlator reads (see Eq. (41))

WA(z, w) = −bTr11B
−1 = −

N∑
j=1

[Gj ]1,1 , (43)

and the one-point resolvent reads

1

N
Tr

[
1

z1−AT

]
= − 1

N

N∑
j=1

[Gj ]2,1 (44)

or

1

N
Tr

[
1

w1−A

]
= − 1

N

N∑
j=1

[Gj ]1,2 . (45)

In the next subsection we derive a set of recursion relations
for Gj’s using Schur inversion formula.

2. Schur formula

We employ the Schur inversion formula(
A B
C D

)−1

=

(
SD −SDBD−1

−D−1CSD SA

)
, (46)

with SD = (A − BD−1C)−1 the inverse of the Schur com-
plement of D and SA = (D − CA−1B)−1 the inverse of the
Schur complement of A.

First, we show how this works for j = 1 and later we gener-
alize for arbitrary j. In order to implement the Schur inversion

formula, we represent B̃ with the block matrix structure of the
form

B̃ =

(
B̃11 B̃1?

B̃?1 B̃(1)

)
, (47)

where B̃11 is the 2 × 2 matrix defined in Eq. (38), B̃1? and
B̃?1 are 2×2(N −1) and 2(N −1)×2 matrices respectively,
and B̃(1) is a 2(N − 1)× 2(N − 1) matrix. The matrix B̃(1)

is the B̃ matrix of A(1) obtained by removing the first column
and row from the matrix A.

Now, we are ready to find an equation for G1, the upper-left
2 × 2 block of B̃−1 (see Eq. (42)), taking full advantage of
the block structure in Eq. (47). The Schur formula applied to
the upper-left 2× 2 block of B̃ gives the following

G1 =
1

B̃11 − B̃1?[B̃(1)]−1B̃?1
. (48)

Now, using Eq. (38) and the fact that both B̃1? and B̃?1 are
concatenations of matrices of the form A (see Eq. (39)), we
obtain

G1 =
1(

0 w
z 1

)
− A11 −

∑
k∈∂1

∑
`∈∂1 A1kG

(1)
k` A`1

, (49)

where

G
(1)
k` =

(
[(B̃(1))−1]2k−1,2`−1 [(B̃(1))−1]2k−1,2`

[(B̃(1))−1]2k,2`−1 [(B̃(1))−1]2k,2`

)
. (50)

Note that G(1)
kk = G

(1)
k , the matrices we defined before in (42).

In the sums in Eq. (49), we omit contributions from k, ` /∈ ∂1

because A1k and A`1 are null matrices in this case (see Eq.
(39)).

Since A is the adjacency matrix of a (weighted) tree graph,
it holds that G(1)

k` is null for any k, ` ∈ ∂1 with k 6= `. To show
this, note the following facts:

1. the nodes k and ` belong to distinct trees in the forest
represented by A(1);

2. the matrix (B̃(1))−1 has the mathematical form of a re-
solvent matrix (u1−X)−1, where X is a block matrix
built out of 2 × 2 matrices located at the edges of the
graph represented by A;

3. the matrix element [Xn]k,` denotes the sum of the
weights of the paths in the graph of length n that con-
nect node k to node `. If there exists no path that runs
form k to `, then [Xn]k,` = 0 for all n.

Therefore, expanding (u1−X)−1 =
∑∞
n=0X

n/un+1, it fol-
lows that [(u1 −X)−1]k,` = 0 (and therefore also G

(1)
k` ) if k

and ` belong to distinct trees.
Hence, applying that for tree matrices the G

(1)
k` are null if

k, ` ∈ ∂1 with k 6= `, we can simplify Eq. (49) to

G1 =
1(

0 w
z 1

)
− A11 −

∑
k∈∂1 A1kG

(1)
k Ak1

. (51)
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This equation can be generalized to an arbitrary node j be-
cause the Schur formula works the same way upon a permu-
tation that is equivalent to relabelling of nodes. Hence, for an
arbitrary node j = 1, . . . , N , Eq. (51) becomes

Gj =
1(

0 w
z 1

)
− Ajj −

∑
k∈∂j AjkG

(j)
k Akj

. (52)

This set of equations is not closed, because in general Gj 6=
G

(k)
j for k ∈ ∂j . To close the equations, we can repeat the

same procedure on the N graphs A(j) obtained by removing
one node at a time. We then obtain

G
(j)
k =

1(
0 w
z 1

)
− Akk −

∑
`∈∂k\j Ak`G

(k,j)
` A`k

, (53)

where j ∈ {1, 2, . . . , N} , k ∈ ∂j , and G
(k,j)
` are defined anal-

ogously to Eq. (50) but on the graph where the two nodes k, j
have been removed.

Note that in general G(k,j)
` 6= G

(k)
` , and the recursion has to

be continued. However, for tree matrices the recursion can be
closed at the second step. Indeed, since nodes ` and j belong
to distinct trees on the graphA(k), the further removal of node
j does not affect G(k)

` and therefore G
(k,j)
` = G

(k)
` . We finally

obtain a closed set of equations

G
(j)
k =

1(
0 w
z 1

)
− Akk −

∑
`∈∂k\j Ak`G

(k)
` A`k

, (54)

which are valid for all k ∈ ∂j on tree graphs.
Solving the Eqs. (52) and (54) on one instance of a tree

graph, one would get access to the corresponding two-point
correlator WA(z, w) = −

∑N
j=1[Gj ]1,1. Since the Eqs. (52)

and (54) are local equations, i.e. the right-hand sides of the
Eqs. (52) and (54) only depend on the local neighborhood of
node j, we can also apply Eqs. (52) and (54) to graphs that
are locally tree-like.

C. Exact solution for oriented trees

We show now how Eqs. (52) and (54) simplify in the case of
oriented trees, i.e., trees for which all edges are unidirectional
(CjkCkj = 0 for all k 6= j).

In this case, the last terms in the denominator of the r.h.s.
of Eqs. (52) and (54) have off-diagonal entries equal to zero.
Therefore,

G
(j)
k =

(
α

(j)
k

1
z−Dk

1
w−Dk 0

)
Gk =

(
αk

1
z−Dk

1
w−Dk 0

)
,

(55)
where

α
(j)
k =

∑
`∈∂k\j C`k α

(k)
` J2

`k − 1

(z −Dk)(w −Dk)
, (56)

and

αk =

∑
`∈∂k C`k α

(k)
` J2

`k − 1

(z −Dk)(w −Dk)
. (57)

The recursion relations given by Eqs. (56)-(57) can be
solved numerically on a fixed instance and the two-point cor-
relator is given by

WA(z, w) = −
N∑
k=1

αk , (58)

whereas for oriented trees the one-point resolvent reads [31,
43]

WA(z) =

N∑
k=1

1

z −Dk
. (59)

In practice, we will often be interested in the dynamics on
graphs that are locally tree-like and locally oriented. Eqs.
(56)-(57) also apply to these graph ensembles since the right-
hand side of the Eqs. (56)-(57) only depends on the local
neighborhood of node k. In the next section, we consider an
important class of random graphs that are locally tree-like and
locally oriented.

IV. DIRECTED RANDOM GRAPHS WITH A
PRESCRIBED DEGREE DISTRIBUTION

We derive analytical expressions for S(t) for the case when
A is the adjacency matrix of a directed random graph with a
prescribed joint degree distribution, as defined in the introduc-
tion. This ensemble of random graphs is locally tree-like and
locally oriented, and therefore the Eqs. (56)-(57) apply. To
summarize, we will obtain the general formula

S(t) =
1

(2πi)2

"
γ

et(z+w)dzdw[´ pD(x)dx
(z−x)(w−x)

]−1

− r2

, (60)

where

r2 = cJ2 (61)

is the product of the mean out-degree (or in-degree)

c =

∞∑
k=0

pdeg(k) k (62)

and the second moment J2 =
´

dx pJ(x)x2 of the bond dis-
order. Eq. (60) is one of the main results of this paper.

From Eq. (60), we observe that S(t) is universal in the
sense that it only depends on pJ(x) and pdeg(k) through the
single parameter r. On the other hand, the dependence on pD
is explicit.

The present section is organized as follows. In the first sub-
section, we discuss the spectral properties of adjacency matri-
ces of directed random graphs with a prescribed joint degree
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distribution. In the second subsection, we derive the formula
(60). In the third and fourth subsections, we derive explicit
expressions for S(t) by computing the contour integral in Eq.
(60) for fixed diagonal disorder

pD(x) = δ(x− µ) , (63)

and for bimodal diagonal disorder,

pD(x) = (1− q)δ(x− µ1) + qδ(x− µ2) , (64)

respectively.

A. Spectral properties and asymptotic stability

The spectra of random graphs with a prescribed degree dis-
tribution have been studied in detail in the limit N → ∞ in
Refs. [31, 41, 43]. If c > 1, then the graph contains a gi-
ant strongly connected component [39], which contributes a
deterministic continuous part to the spectrum and may also
contribute deterministic outliers.

The boundary of the continuous part of the spectrum con-
sists of all λb solving

r2

ˆ
dx pD(x)

1

|λb − x|2
= 1 . (65)

The deterministic outliers λisol solve the relation

cJ

ˆ
dx pD(x)

1

λisol − x
= 1 . (66)

Note that (i) outliers are always real, (ii) if J = 0, there are no
outliers, (iii) the boundary of the continuous part and the lo-
cation of outlier(s) are universal in the sense that they depend
on pJ(x) and pdeg(k) only through a single parameter (either
r or cJ).

B. General diagonal disorder

Since directed random graphs with a prescribed degree dis-
tribution are locally tree-like and locally oriented, the Eqs.
(56)-(57) apply. We obtain an analytical expression for the
average

αk = [Gk]1,1 = α (67)

by taking the ensemble average of Eq. (56).
Using that (i) the right-hand-side of Eq. (56) is identical

to the right-hand-side of Eq. (57) for any j, k with Cjk = 1;
(ii) all variables on the r.h.s. of Eq. (56) are statistically inde-
pendent, as degree-degree correlations are absent; and (iii) all
nodes in the ensemble are statistical equivalent, we obtain the
equation

α = (r2α− 1)

ˆ
dx pD(x)

1

(z − x)(w − x)
. (68)

Solving (68) for α and using

WA(z, w) = −
N∑
j=1

[Gj ]1,1 = −Nα , (69)

we obtain the general formula Eq. (60) for S(t).
It remains to perform the contour integral in (60) for some

specific choice of the diagonal disorder, which is the subject
of the next subsections.

C. Fixed diagonal disorder

We compute the contour integral in Eq. (60) in the case of
fixed disorder given by Eq. (63). The integral (60) can be
performed using residues. Changing variables z′ = z+µ and
w′ = w + µ, we obtain

S(t)=
1

2πi
e−2µt

˛
γ′

dz′
et(z

′+r2/z′)

z′

= e−2µtI0(2rt) . (70)

Quite remarkably, Eq. (70) for sparse oriented graphs and Eq.
(11) for fully connected structures share the same functional
form, and therefore the two models fall into the same univer-
sality class. Indeed, if J = 0, then r is the spectral radius ρ of
A (see (65)).

For large t,

S(t) ∼ 1√
4πrt

e2t(r−µ) , (71)

where the exponent describes the asymptotic growth or decay
at a rate r−µ. The rate r−µ contains a positive contribution
r, which is the amplification of the initial perturbation when
it spreads throughout the network, and a negative contribution
−µ, which is the local decay rate.

For t ≈ 0, it holds that

S(t) = [1− 2µt+ O(t2)] , (72)

independent of the network structure.
While the initial response is independent of the network

structure and leads to a decrease in S(t), the response at larger
t will depend on how the initial perturbation spreads through
the network. In particular, if r−µ > 0, then the response S(t)
is non-monotonic.

It is insightful to interpret the result given by Eq. (71) in the
light of the spectral properties of the ensemble, as discussed
in Sec. IV A. The boundary of the continuous part of the spec-
trum is according to Eq. (65) a circle of radius r centered
around −µ. As a consequence, the eigenvalue with the max-
imum real part, which belongs to the continuous spectrum, is
given by

λ′b = max
λb

Re[λb] = r − µ . (73)
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FIG. 1: SN (t) = 〈|y(t)|2〉 for weighted oriented graphs with Poissonian connectivity with mean degree c = 2, with fixed diagonal (Top
Row) and bimodal diagonal disorder (Bottom Row). The theoretical result for S(t) is provided in black solid line (see Eqs. (70) and (76),
respectively). Symbols denote numerical solution of the differential equation (2) for N = 5000, averaged over 25 initial conditions and 5
realizations of the underlying graph. Red circles stand for Gaussian bond disorder, blue triangles for uniform bond disorder, and green squares
for Laplace-distributed disorder. The parameters for different panels are described below. We show schematically in the insets the location
of the continuous part of the spectrum and the outlier (if present), according to Eqs. (65) and (66). Top row: Fixed diagonal at −µ = −5.
(a) J = 2 and J2 = 5, (b) J = 3 and J2 = 10, and (c) J = 4 and J2 = 32. In panels (b) and (c), the red dashed curves represent S̃(t)
with fitted values of parameters a = 7.7 · 10−4, b = 1.04 and a = 4.2 · 10−3, b = 4.03, respectively. Eq. (65) simplifies in this case as
r2 = cJ2 = |λb − µ|2 and λisol = cJ − µ. Bottom row: Diagonal entries taken at random between −µ1 = −5 and −µ2 = −14 with equal
probability (q = 1/2). (a) J = 2 and J2 = 5, (b) J = 4 and J2 = 17, and (c) J = 4 and J2 = 32. In panels (b) and (c), the red dashed
curves represent S̃(t) with fitted values of parameters a = 1.1 · 10−3, b = 0.6 and a = 1.8 · 10−4, b = 4.0, respectively.

This implies that the asymptotic dynamics of S(t), given by
Eq. (71) for large t, reads

S(t) ∼ 1√
4πrt

e2tλ′b , (74)

and the asymptotic rate is governed by the boundary of the
continuous part of the spectrum. The outlier

λisol = cJ (75)

plays no role in the behavior of S(t), even when λisol > λ′b.
This is because the initial perturbation is random and there-
fore – in the limit N → ∞ – it stands orthogonal to the one-
dimensional eigenspace spanned by the outlier.

D. Bimodal diagonal disorder

In the case of bimodal diagonal disorder with probability
density pD given in Eq. (64), we evaluate the integral in Eq.
(60) using residues. After some calculations, presented in Ap-
pendix B, we obtain

S(t) = (1− q)e−2µ1tI0(2rt
√

1− q)
+ qe−2µ2tI0(2rt

√
q) + e−2µ1tΨ(t) , (76)

where

Ψ(t) =
∑
m≥1

(rt)2m

(m!)2

m∑
n=1

(
m+ 1

n

)
qn(1− q)m−n+1

× [1F1(n;m+ 1;−(µ2 − µ1)t)]2 , (77)

is a series involving confluent hypergeometric functions 1F1

[79]. The confluent hypergeometric function is defined by the
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series

1F1(a; b; z) =

∞∑
n=0

(a+ n− 1)n

(b+ n− 1)n
zn

n!
, (78)

where

(a)s =

s−1∏
j=0

(a− j) , s ∈ N , (79)

is the falling factorial and (a)0 = 1. Although not imme-
diately evident, the formula (76) is symmetric in µ1 and µ2

upon the exchange q → 1 − q as it should, due to a trans-
formation formula of the confluent hypergeometric function
upon change of sign of the main argument.

The formula (76) is rather complicated, but it has an ap-
pealing dynamical interpretation. In this example, the dynam-
ical system consists of two sub-populations with decay rates
µ1 and µ2, respectively. Neglecting interactions between the
subpopulations, each of these would evolve in isolation ac-
cording to Eq. (70), albeit with reduced connectivities qc and
(1−q)c, respectively. The first two terms in (76) describe pre-
cisely the dynamics of the populations in isolation. The third
term instead describes the dynamical interference between the
two sub-populations. We expect that the interference will be
important in the limit of large t.

For t ≈ 0, it holds that

S(t) = [1− 2(1− q)µ1t− 2qµ2t+ O(t2)] , (80)

which is again independent of the network structure.
The analysis of the t→∞ limit of Eq. (76) is more compli-

cated because of the nontrivial form of the interference term.
Nevertheless, based on the analysis in the previous subsection
for fixed diagonal disorder, we expect that for large t

S(t) ∼ eλ
′
bt (81)

where

λ′b = max
λb

Re[λb] (82)

is the value of λb, located at the boundary of the continuous
part of the spectrum, with the largest real part. In the present
example with pD the sum of two Dirac distributions, we ob-
tain (see Appendix C)

λ′b =
−µ1 − µ2 +

√
(µ1 − µ2)2 + 4r2q + 4

√
D

2
, (83)

where

D = r2µ2
1q − 2r2µ1µ2q + r2µ2

2q + r4q2 . (84)

Hence, for bimodal diagonal disorder even the asymptotic rate
λ′b does not admit a simple expression, which clarifies why it
is not a simple task to analyze the Eq. (76) in the limit of large
t.

V. NUMERICAL EXPERIMENTS ON RANDOM
MATRICES AND ON EMPIRICAL NETWORKS

We compare the obtained analytical expression for S(t) =
limN→∞ SN (t), given by Eq. (70) and Eqs. (76)-(77), with
numerical results for SN (t) on random matrices and on em-
pirical networks.

A. Random graphs

We analyze the dynamics described by Eq. (2) with A be-
ing the adjacency matrix of a weighted random graph with
a prescribed degree distribution (see the Introduction for the
definition of this ensemble). Here, we use a Poissonian distri-
bution for the in-degrees (and out-degrees), namely,

pdeg(k) =
e−cck

k!
(85)

in Eq. (13). In addition, in Appendix D, we show results for
power-law degree distributions, which are relevant to describe
real-world networks, see Refs. [16, 60–63].

In Fig. 1, we compare the obtained expressions for S(t)
with estimates of SN (t) obtained from numerical experi-
ments. We consider three qualitatively different scenarios:
(a) the system is both transiently and asymptotically stable
(λ′b < 0 and λisol < 0), (b) the system is transiently sta-
ble but asymptotically unstable (λ′b < 0 and λisol > 0), and
(c) the system is unstable (λ′b > 0). Since the theory in Eq.
(60) is obtained by taking the limit N → ∞ at fixed time,
while in the simulations we work with a fixed system size N
and look at its time evolution, there will be a crossover time
t?(N) after which the theory and simulations are expected to
diverge (see Appendix A for a detailed discussion). However,
for t < t?(N), we observe perfect agreement between theory
and simulations, proving that the precise connectivity struc-
ture and the type of bond disorder do not matter in the tran-
sient dynamics of large dynamical systems. Only the combi-
nation r2 = cJ2 plays a role, as predicted by the theory. In
case (a), theory and simulations are in very good agreement,
and 1/(2(r − µ)) provides the typical relaxation time to sta-
tionarity.

We clearly see the effect of the crossover time t?(N) in
cases (b) and (c) of Fig. 1 [but this would also become
apparent in case (a) when t is large enough and if a dif-
ferent scale were used]. For t � t?(N), the contribution
from the eigenmode with largest – and positive – real part
SN (t;A) ∼ aNe

2tRe[λ1] (where aN is independent of t and
vanishes for largeN ) will govern the large-t behavior of every
single realization of the N ×N numerical experiment, and as
a consequence also of the average SN (t) = SN (t;A).

In order to capture both the transient and asymptotic behav-
iors, we can modify S(t) by including the effect of the largest
eigenmode as

S̃(t) = S(t) + ae2bt , (86)

where a and b are two (albeit non-universal) fitting parame-
ters. This is illustrated in Fig. 1 (b) and (c). We observe
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empirically that universality is broken after t?(N): this is be-
cause the exponential growth of SN (t;A) at large times – for
every individual realization of the matrix A – is very sensitive
to the precise value of λ1(A), which of course fluctuates from
one realization to another. The average SN (t) = SN (t;A)
is therefore disproportionally affected by the largest λ1(A)
across the sample used for the simulations.

Note also that in the panel (b) the fitted exponent b ≈
λisol, whereas in panel (c) the exponent b is different from
max Re[λb].

B. Empirical networks

We test how well Eq. (70) describes the transient dynamics
of a dynamical system defined on a real-world graph. To this
aim, we numerically solve the dynamics in Eq. (2) for a matrix
of the form Eq. (12), with Cij the entries of the adjacency
matrix of a real world network. We consider two examples
of real-world networks, namely, a food web and a signaling
network.

For the food web example, we have chosen the food web
of Otago Harbour, an intertidal mudflat ecosystem in New
Zealand, whose adjacency matrix is determined in Ref. [69].
This adjacency matrix contains 180 nodes and 1924 edges.
Nodes represent species, which include among others, plants,
annelids, birds, and fish. Links represent trophic interactions
between species, including among others, predation, parasitic
castration, and macroparasitism interactions. The food web
of Otago Harbour is an (almost) oriented network: 97% of the
links are oriented. The mean out-degree is c = 1924/180 ≈
10.7.

For the example of a cellular signaling network, we have
considered a network of molecular interactions between sig-
naling proteins in human cells. We have collected data from
the NCI-Nature Pathway Interaction database [70], which is
now available in the Network Data Exchange, NDEx [71–
73]. We have extracted the adjacency matrix formed from
the nodes in the 2-step neighborhood of the protein kinases
MAPK1, AKT1, JAK1 and the protein APC. The resultant
adjacency matrix contains 2288 nodes and 23207 edges. The
mean out-degree is c ≈ 13.3 and 70% of the edges are ori-
ented.

In Fig. 2 we present simulated dynamics on these networks.
Numerical results show that the theory describes very well
the transient dynamics on the food web (for all t < t?(N)),
in spite of its small size N = 180, while the dynamics of
the signaling network is less well captured. Plotting the full
spectra (see insets of Fig. 2), we see that the largest eigenvalue
of the food web is almost equal to

√
c (predicted by Eq. (65)),

whereas for the signaling network it is much larger than
√
c,

which clarifies why the theory works better for the food web.
In order to further demonstrate the relevance of Eq. (70) in

modeling dynamics on real networks, we compare SN (t) with
a naive theory based on either an exponential decay e−2tµ or
on exponential growth e2t(r−µ). We observe that the naive
theories do not capture well the transient response of the dy-
namical system. This is because the response of the real

e2t(r−µ)

e−2tµ

S(t)

S(t)

t

FIG. 2: SN (t) = 〈|y(t)|2〉 for the simulated dynamics of Eq. (2)
on two examples of real-world graphs (circles for a food web with
N = 180 and c = 10.7, and stars for a signaling network with
N = 2288 and c = 13.3) are compared with the theoretical pre-
diction S(t) (blue and red lines), given by Eq. (70), as well as with,
e2t(r−µ) and e−2µt (black and magenta lines). We have weighted the
networks with couplings Jij that are i.i.d. random variables drawn
from the distribution pJ(x) = (1/2)δ(x− 1) + (1/2)δ(x+ 1) and
we have used a single realization of the matrix J for both the food
web and the signaling network. The diagonal elements are fixed to
a constant −µ = −r + 0.27, such that the system is asymptoti-
cally unstable. Insets (a) and (b) show the spectra of the adjacency
matrices A for the food web and the signaling network considered
with random couplings. The red circle has radius r =

√
c and is

the predicted boundary of the spectrum according to (65). We have
estimated SN (t) = 〈|y(t)|2〉 by simulating the dynamics on the gen-
erated networks for 25 realizations of the initial condition y(0).

system consists of an initial decay at rate µ and asymptotic
growth at rate r − µ, which govern how the initial random
perturbation propagates through the networks.

VI. CONCLUSIONS AND OUTLOOK

We have developed a mathematical formalism that allows
one to study how the transient response to an initial per-
turbation of a large dynamical system, captured by the ob-
servable SN (t), depends on the topology of the underlying
network of interactions. The developed method allows one
to compute the limiting value S(t) = limN→∞ SN (t) for
graphs that have a locally tree-like structure. As an example,
we have studied the transient dynamics on directed random
graphs with prescribed degree distribution, which are canon-
ical models for real-worlds systems, such as, the Internet
[39, 64, 65], neural networks [66] and other high-dimensional
systems [16, 17, 40]. We have found that the transient re-
sponse of large systems is universal, in the sense that S(t)
only depends on the network topology through the single pa-
rameter r2 = cJ2, which is the product of the mean de-
gree and the second moment of the distribution of interactions
strengths. On the other hand, the dependence on the statistics
of diagonal elements, given by the distribution pD, is non-
universal.

The developed method is fairly general, and therefore vari-
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ous other examples can be considered. For example, it should
be straightforward to extend the presented results to random
graphs with correlations between in-degrees and out-degrees
[31] or to non-oriented systems defined on regular graphs
[67]. More challenging, but still feasible, is to extend the the-
ory to graphs that contain many small cycles [76–78].

From a random matrix theory point of view, in the present
paper we have developed the mathematical theory for the 2-
point correlator WA(w, z) of sparse random graphs. We can
extend the present formalism to account for higher order 2n-
correlators, which provide information on higher-order mo-
ments of SN [75].

Since the theoretical response functions, given by Eqs. (70)
and (76), only depend on a few parameters and describe well
the transient response of dynamical systems defined on real-
world networks, we believe that Eqs. (70) and (76) can be
used to infer properties of networks from time-series data.
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Appendix A: N -dependence of the transition time t?(N)

We study here how the crossover time t?(N) depends on
N . The crossover time determines when the system changes
from its transient regime, where SN (t) = 〈|y(t)|2〉 ≈ S(t) =
limN→∞ SN (t), to the asymptotic regime, where S(t) �
SN (t). For transiently stable systems, we define the crossover
time t?(N) by Eq. (9).

In the first subsection, we determine the N -dependence
of t?(N) with a brute-force numerical analysis on four ran-
dom matrix ensembles. In the second subsection, we analyze
t?(N) in the case of the normal Ginibre ensemble, a case for
which we have the rare luxury of being able to carry out the
analytical treatment in full. We obtain an explicit analytical
expression for SN (t), which can be used to evaluate numeri-
cally its minimum value. We find that t?(N) ≈ 1.15

√
N .

1. Numerical results for four ensembles

We study the first-order dynamics in Eq. (2) for

Aij = −µδij +Xij . (A1)

In Fig. 3 we present numerical results for SN (t) as a func-
tion of t for different values of N in the case of Xij being

i.i.d. random variables taken from a Gaussian distribution.
Fig. 3 shows that S(t) ≈ SN (t) for small enough t (tran-
sient regime) while S(t) � SN (t) when t is large enough
(asymptotic regime). Moreover, we observe that the crossover
time t?(N) from the transient regime to the asymptotic regime
grows as a function of N .

In Fig. 4 we analyse how the crossover time t?(N) depends
on N . For this we use its definition given by Eq. (9). We
consider four random matrix ensembles:

(i) Ginibre matrices with zero mean [74]: the Xij are
i.i.d. random variables taken from a Gaussian distri-
bution with zero mean and variance 1/N , and we set
µ = −1;

(ii) Gaussian Orthogonal Ensemble: the Xij = Xji are
i.i.d. real-valued random variables taken from a Gaus-
sian distribution with zero mean and variance 1/N , and
we set µ = 2;

(iii) Ginibre matrices with nonzero mean: the Xij are the
i.i.d.random variables taken from a Gaussian distribu-
tion with mean 6/N and variance 20/N , and we set
µ = 5;

(iv) Adjacency matrices of sparse random graphs: we set
Xij = JijCij with Cij the adjacency matrix of a ran-
dom graph with a prescribed joint distribution of in-
degrees and out-degrees given by

pdeg(kin, kout) =
e−cckin

kin!

e−cckout

kout!
, (A2)

with a mean in-degree (out-degree) c = 2. In addition,
we weigh the edges with couplings Jij that are i.i.d. ran-
dom variables taken from a Gaussian distribution with
mean 3 and variance 1. We set µ = 5.

In cases (i), (ii) and (iv) the numerical results for t? are
well fitted by the power law t? = αNβ . In the case (iii) a
pure power-law curve does not describe the data as well as the
function t? = αNβ logN , i.e., a power-law with a logarith-
mic correction.

Interestingly, for the Ginibre ensemble and GOE (cases (i)
and (ii)) the fitted exponents are approximately 1/2 and 2/3,
respectively, which is the exponent governing the scale of typ-
ical fluctuations at the edge of the spectrum [80, 81]. This
pattern, however, does not seem to carry over to cases (iii)
and (iv). We are not aware of a theory that can shed more
light on the scaling of t? with N in these cases.

In conclusion, numerical results indicate that t? diverges
with N with a law that might be related to the scale of typical
fluctuations at the edge of the spectrum. In the next section,
we analyze in more detail the normal Ginibre ensemble, which
allows for a more complete analytical treatment.

2. Analytical treatment of t?(N) for the normal Ginibre
ensemble

We analyze the N -dependence of t?(N) for a rare exam-
ple where a full analytical treatment is possible, namely the
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FIG. 3: Markers denote numerical results for SN (t) = 〈|y(t)|2〉 for
model (2) with matrix (A1) as a function of t and for different values
ofN . TheXij are i.i.d. random variables taken from a Gaussian dis-
tribution with zero mean and variance 1/N and we have set µ = −1.
Dashed black line is the curve S(t) = e−2µtI0(2ρt) (see Eq. (11)).
Markers are averages over 2000 matrix samples with 25 realizations
of the initial conditions for each sample.

normal Ginibre ensemble. For this ensemble, we derive an
explicit analytical expression for SN (t). Evaluating numeri-
cally its minimum, we obtain that

t?(N) ≈ 1.15
√
N . (A3)

a. Definition of the normal Ginibre ensemble

We consider dynamical systems of the type given by Eq.
(2) with

A = −µ1+X ′/
√
N , (A4)

where X ′ is a matrix drawn from the normal Ginibre ensem-
ble.

Normal Ginibre matrices are obtained by retaining the nor-
mal term in the Schur decomposition of a complex Ginibre
matrix. The entries of the complex Ginibre ensemble [74] are
defined as follows,

Xjk = xjk + iyjk , (A5)

where xjk and yjk are i.i.d. random variables from a Gaussian
distribution with zero mean and variance 1/2. The matrices
in the ensemble are non-symmetric. The joint pdf of matrix
entries reads

PX(X) = CN exp
[
−Tr(XX†)

]
, (A6)

where CN is the normalization constant.
In order to obtain a normal Ginibre ensemble, we imple-

ment the Schur decomposition

X = U(Λ + T )U† (A7)

with U a unitary matrix, Λ the diagonal matrix of eigenval-
ues, and T a strictly upper triangular matrix. From Eq. (A7) it

is apparent that the upper-triangular matrix T is the source of
non-normality. Therefore, we drop the upper-triangular ma-
trix to obtain

X ′ = UΛU† , (A8)

which defines a matrix sample drawn from the normal Ginibre
ensemble.

Implementing the Schur decomposition in Eq. (A6), we
find that PX factorizes into

PX(X) = PT (T )PΛ(Λ)PU (U) , (A9)

where

PΛ(Λ) ∼ exp

(
−

N∑
i=1

|λi|2
)∏
i 6=j

|λi − λj |2 (A10)

is the distribution of complex eigenvalues in the normal Gini-
bre ensemble.

b. Calculation of S(t)

Because of Eqs. (5), (6), and (24), we can write

SN (t) =
1

N
Tr eA†teAt . (A11)

Taking the limit N → ∞ and using that the eigenvectors of
normal (Ginibre) matrices are orthonormal, we obtain that

S(t) = e−2µt

ˆ
C2

d2z et(z+z̄)ρ(z, z̄) , (A12)

where the integration is over the entire complex plane and
ρ(z, z̄) is the spectral density of the normal Ginibre ensemble
in the limit N → ∞. Since in this limit, the spectral density
is uniform in the disk of unit radius [82],

ρ∞ =
1

π
1|z|<1 , (A13)

with 1T the indicator function (equal to 1 when T is true and
0 when T is false), we obtain the expression

S(t) =
e−2µt

π

ˆ 1

0

rdr

ˆ 2π

0

dϕ e2rt cosϕ =

=

ˆ 1

0

2rI0(2rt)dr =
e−2µt

t
I1(2rt) , (A14)

where I0 and I1 are modified Bessel functions. This result is
the analog of Eqs. (11) and Eqs. (60) for dense and normal
matrices.

To compute t? as a function of N , though, the analysis
above is not sufficient, and we need to resort to a finite-N
calculation.
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FIG. 4: Numerical results for the crossover time t? as a function of N for the four considered models: (i) Ginibre ensemble, (ii) Gaussian
Orthogonal Ensemble, (iii) Ginibre ensemble with an outlier, (iv) sparse random graph with Poissonian connectivity, mean degree c = 2 and
Gaussian bond disorder. Solid lines denote fitted functions to the empirical data. In cases (i) and (ii) we have set µ such that the system is at
the edge of stability (in the N →∞ limit, the average of the leading eigenvalue λ1 = 0), and therefore S(t) decays asymptotically as t−1/2.
The parameters in (iii) and (iv) are set such that the system is transiently stable but asymptotically unstable, as in the case (b) of the top panel
of Fig. 1. In cases (i)-(iii), markers are averages over 2000 matrix samples with 25 realizations of the initial conditions each. In case (iv), we
have used 20 matrix samples with 25 realizations each.

c. Calculation of SN (t)

For finite N , Eq. (A12) is modified as

SN (t) = e−2µt

ˆ
C2

d2z et(z+z̄)ρN (z, z̄) , (A15)

where ρN (z, z̄) is now the spectral density of the normal Gini-
bre ensemble at finite matrix sizes N . It holds that [83]

ρN (z, z̄) =
1

Nπ
e−N |z|

2
N−1∑
k=0

(N |z|2)k

k!
. (A16)

Therefore, we obtain

SN (t) =
e−2µt

π

ˆ ∞
0

rdr

ˆ 2π

0

dϕ e2tr cosϕe−Nr
2
N−1∑
k=0

Nkr2k

k!

= 2e−2µt

ˆ ∞
0

e−Nr
2

I0(2rt)

N−1∑
k=0

Nkr2k+1

k!
dr .

(A17)

It is convenient to rescale r → s√
N

to get

SN (t) =
2e−2µt

N

ˆ ∞
0

e−s
2

I0

(
2st√
N

)N−1∑
k=0

s2k+1

k!
ds .

(A18)
The integral can be performed with some work to yield even-
tually the exact result

SN (t) =
e−2µt

N

N−1∑
k=0

1F1

(
k + 1; 1;

t2

N

)
, (A19)

where 1F1(a; b; z) is the Kummer confluent hypergeometric
function, defined in Eq. (78).

d. Computing the crossover time t?(N)

The crossover time t? is defined as the minimum of Eq.
(A19). By equating the derivative of Eq. (A19) to zero, we
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obtain that t? satisfies

−µe−2µt?

N

N−1∑
k=0

1F1

(
k + 1; 1;

t?2

N

)

+
t?e−2µt?

N2

N−1∑
k=0

(k + 1) 1F1

(
k + 2; 2;

t?2

N

)
= 0 .

(A20)

We have solved Eq. (A20) numerically for N < 400 and
obtained that t? is well fitted by t?(N) ≈ αNβ with a fitted
exponent β ≈ 1/2, see Fig. 5. A careful asymptotic analysis
of Eq. (A20) is beyond the scope of this paper and is left for
future investigation.

10 50 100

5

10

20

t
*(N) for normal Ginibre

t
* = 1.15 N0.508

FIG. 5: Dependence of t? on the system size for the normal Ginibre
ensemble, see Appendix A 2. Points are the numerical solution of
Eq. (A20). The blue solid line is obtained by fitting the model t? ≈
αNβ with 2 free parameters.

Appendix B: Derivation of Eqs. (76) and (77) for S(t) in the case
of bimodal disorder

We explicitly solve the contour integral in Eq. (60) for the
case of a bimodal distribution

pD(x) = (1− q)δ(x− µ1) + qδ(x− µ2) (B1)

with µ1, µ2 ≥ 0 and q ∈ [0, 1], and derive the expression for
S(t) given by Eqs. (76) and (77).

Without loss of generality we can consider a shifted distri-
bution

p̂D(x) = (1− q)δ(x) + qδ(x− µ) (B2)

since

S(t;µ1, µ2) = e−2µ1tS(t; 0, µ1 − µ2) , (B3)

which follows from the variable transformation z → z − µ1

and w → w − µ1 in Eq. (60).
Therefore, we evaluate the quantity

Ŝ(t) = S(t; 0, µ1 − µ2) . (B4)

Using
ˆ

dx p̂D(x)
1

(z − x)(w − x)
=

1− q
wz

+
q

(w − µ)(z − µ)
,

(B5)
in Eq. (60), we find that

Ŝ(t) =
1

(2πi)2

‹
γ

dzdw
et(z+w)[

1−q
wz + q

(w−µ)(z−µ)

]−1

− r2

,

(B6)
where r2 = cJ2 is as defined in Eq. (61).

1. Series expression for Ŝ(t)

In order to compute the contour integral in Eq. (B6), we
express Ŝ(t) as an infinite series, which we can integrate term
by term. To this aim, we use the geometric series

1

I−1 − r2
=

I

1− r2I
=

1

r2

∑
m≥0

(r2I)m+1 , (B7)

in Eq. (B6), and find

Ŝ(t) =
1

(2πi)2

∑
m≥0

r2m×

×
"
γ

dzdw et(z+w)

(
1− q
wz

+
q

(z − µ)(w − µ)

)m+1

.

(B8)

Using the binomial theorem, we obtain the double sum

Ŝ(t) =
∑
m≥0

r2m
m+1∑
n=0

ϕ(n,m; q, µ; t) , (B9)

where we have denoted

ϕ(n,m; q, µ; t) :=

(
m+ 1

n

)
qn(1− q)m+1−n×

×
[

1

2πi

˛
γ

dz
etz

zm+1−n(z − µ)n

]2

. (B10)

2. Performing the contour integral

To compute the contour integrals in ϕ(n,m; q, µ; t), we
need to evaluate the residues at z = 0 and z = µ, and sum
them up,

1

2πi

˛
γ

dz
etz

zm+1−n(z − µ)n

= Resz=0

[
etz

zm+1−n(z − µ)n

]
+ Resz=µ

[
etz

zm+1−n(z − µ)n

]
. (B11)
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The two residues are given by

Resz=0

[
etz

zm+1−n(z − µ)n
; z = 0

]
=

(−1)ntm

(m− n)!
U(n,m+ 1;µt) , (B12)

and

Resz=µ

[
etz

zm+1−n(z − µ)n

]
=

(−1)m+1−ntmeµt

(n− 1)!
U(m− n+ 1,m+ 1;−µt) ,

(B13)

respectively, where

U(a, b; z) =
Γ(1− b)

Γ(a+ 1− b) 1F1(a; b; z)

+
Γ(b− 1)

Γ(a)
z1−b

1F1(a+ 1− b; 2− b; z) (B14)

is the Tricomi hypergeometric function (see Eq. (13.2.7) in
Ref. [79]), Γ(x) =

´∞
0
yx−1e−ydy is the Gamma func-

tion, and 1F1(a; b; z) is the Kummer confluent hypergeomet-
ric function as defined in Eq. (78). Note that although the
definition given by Eq. (B14) does not apply for integer b, the
Tricomi hypergeometric function exists also for integer b by
continuity of the rhs of Eq. (B14).

We illustrate the derivation of Eq. (B12). Using the Leibniz
formula for the derivative of a product, we obtain

Resz=0

[
etz

zm+1−n(z − µ)n

]
=

=
1

(m− n)!
lim
z→0

dm−n

dzm−n
etz(z − µ)−n =

=
1

(m− n)!
lim
z→0

m−n∑
s=0

(
m− n
s

)
tm−n−setz(−n)s

(z − µ)n+s
, (B15)

where (a)s is the falling factorial as defined in Eq. (79). Tak-
ing the limit z → 0 in Eq. (B13) and rearranging terms with
the help of the Kummer transformation [79, Eq. (13.2.40)]

zb−1U(a, b; z) = U(a− b+ 1, 2− b; z) , (B16)

we arrive at Eq. (B12).
Equation (B13) is obtained using an analogous reasoning.
Finally, thanks to the identity [79, Eq. (13.2.41)] the sum

of (B12) and (B13) can be simplified as

1

2πi

˛
γ

dz
etz

zm+1−n(z − µ)n
= tm 1F1(n;m+ 1;µt)/m! ,

(B17)
in terms of the Kummer confluent hypergeometric function
defined in Eq. (79).

3. Meaning of the different terms

Plugging Eqs. (B17) and (B10) into the double series Eq.
(B9), provides us with an explicit expression for Ŝ(t). Unfor-
tunately, this mathematical expression is not meaningful yet.
However, we will see that the n = 0, n ∈ {1, 2, . . . ,m}, and
n = m+ 1 terms in the double series can be given an appeal-
ing interpretation, making sense of the formula.

Isolating the n = 0 and n = m+1 terms in (B9), we obtain

Ŝ(t) =
∑
m≥0

r2m [ϕ(0,m; q, µ; t) + ϕ(m+ 1,m; q, µ; t)+

m∑
n=1

ϕ(n,m; q, µ; t)

]
. (B18)

Using Eqs. (B3) and (B18), using the explicit forms

ϕ(0,m; q, µ; t) =
(1− q)m+1t2m

(m!)2
, (B19)

ϕ(m+ 1,m; q, µ; t) =
qm+1t2me2µt

(m!)2
, (B20)

and using the series expressions

∑
m≥0

r2m (1− q)m+1t2m

(m!)2
= (1− q)I0

(
2rt
√

1− q
)
,

(B21)∑
m≥0

r2m q
m+1t2me2µt

(m!)2
= qe2µtI0 (2rt

√
q) , (B22)

for the modified Bessel function I0, we obtain the final result
given by Eqs. (76) and (77).

Appendix C: Spectra of random graphs with a prescribed
degree distribution and bimodal diagonal disorder

We analyze the spectral properties of adjacency matrices
A of weighted random graphs with a prescribed degree distri-
bution — as defined in the introduction of this paper – for the
case where the distribution of diagonal elements is given by
Eq. (64).

If the mean in-degree c > 1, then the spectrum consists of
a continuous part with boundary given by Eq. (65) and with
outliers solving Eq. (66). Substitution of Eq. (64) in Eq. (65)
leads to the relation

q

|λb + µ1|2
+

1− q
|λb + µ2|2

=
1

r2
(C1)

for the boundary of the continuous part of the spectrum. Anal-
ogously, substituting Eq. (64) in Eq. (66) we obtain that out-
liers solve

q

λisol + µ1
+

1− q
λisol + µ2

=
1

cJ
. (C2)
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FIG. 6: Spectra of adjacency matrices of weighted random graphs with the bimodal distribution (C1) on the diagonal, a Gaussian distribution
pJ(x), and an in-degree (or out-degree distribution) pdeg(k) = e−cck/k!. We used the parameters c = 2, µ1 = 5, µ2 = 14, q = 0.5 and
the values for J and r2 = cJ2 are provided below the figures. The red line denotes the theoretical value of the boundary of the absolute
continuous spectrum, according to Eq. (C1) while the markers denote the eigenvalues of one single matrix instance of size N = 4000.

In Fig. 6, we plot the spectra for a few matrix instances
together with the theoretical boundary given by Eq. (C1). If
r2 is small enough, then the continuous part of the spectrum
consists of two disconnected sets, which are centered around
−µ1 and −µ2, respectively. On the other hand, for large r the
continuous spectrum is a simply connected set in the complex
plane.

In order to obtain the leading eigenvalue λ1, i.e., the eigen-
value with the largest real part, we determine the real solutions
of Eq. (C1). If

(µ1 − µ2)2 + 4r2q − 4
√
D < 0 , (C3)

where

D = r2µ2
1q − 2r2µ1µ2q + r2µ2

2q + r4q2 , (C4)

then Eq. (C1) admits two real solutions, namely,

λb,1 =
−µ1 − µ2 −

√
(µ1 − µ2)2 + 4r2q + 4

√
D

2
(C5)

and

λb,2 =
−µ1 − µ2 +

√
(µ1 − µ2)2 + 4r2q + 4

√
D

2
. (C6)

In this scenario, the continuous part of the spectrum is simply
connected. This is illustrated in panels (b) and (c) of Fig. 6.
On the other hand, if

(µ1 − µ2)2 + 4r2q − 4
√
D > 0 , (C7)

then Eq. (C1) admits four real solutions, namely, λb,1, λb,2,

λb,3 =
−µ1 − µ2 −

√
(µ1 − µ2)2 + 4r2q − 4

√
D

2
(C8)

and

λb,4 =
−µ1 − µ2 +

√
(µ1 − µ2)2 + 4r2q − 4

√
D

2
. (C9)

This the scenario illustrated in panel (a) of Fig. 6.
It follows that

λ′b = max
λb

Re[λb] = λb,2 . (C10)

Solving Eq. (C2), we find that there may exist two outlier
eigenvalues, namely,

λ1,isol =
1

2

(
cJ − µ1 − µ2 − S

)
(C11)

λ2,isol =
1

2

(
cJ − µ1 − µ2 + S

)
, (C12)

where

S =

√(
cJ + µ1 − µ2

)2 − 4cqJ(µ1 − µ2) . (C13)

Hence, the leading eigenvalue

λ1 = max {λ′b, λ2,isol} . (C14)

Appendix D: Power-law random graphs

Degree distributions of real-world graphs are often well de-
scribed by power laws, see for instance Refs. [16, 60–63].
Therefore, we compare in this appendix the theoretical result
Eq. (70) for S(t) with numerical results of SN (t) on random
graphs with a power law degree distribution.

In Figure 7 we present results for random graphs with the
prescribed degree distribution

p(kin, kout) =
k−3

in k−3
out

ζ2(3)
, (D1)

where ζ(x) is the Riemann-zeta function. We have set J = 0
and µ large enough such that we are in the stable case, as in
sub-panel (a) of Fig. 1 in the main text ( all eigenvalues are
negative, as maxλb

Re[λb] =
√
ζ(3)/ζ(2) − 1.326 < 0 and

there is no outlier). We observe that the theoretical expression
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Eq. (70) for S(t) captures very well the empirical results at
small enough t and finiteN . On the other hand, for larger val-
ues of t we observe significant sample-to-sample fluctuations.

We can thus conclude that the theoretical expression S(t)
describes well the dynamical response on random graphs with
〈kγ〉 = ∞ for γ ≥ 2 as long as t < t?(N), which is consis-
tent with results on the leading eigenvalue of directed random
graphs with power-law degree distributions obtained in [31].

t

FIG. 7: Numerical results for SN (t) = 〈|y(t)|2〉 on a power-
law random graph (markers) are compared with the theoretical re-
sult Eq. (70) [given by S(t) = e−2µtI0(2rt)] valid for infinitely
large graphs (lines). The prescribed degree distribution is given by
Eq. (D1), the couplings Jij are i.i.d. random variables drawn from
the distribution pJ(x) = (1/2)δx,1 + (1/2)δx,−1, µ = 1.326 and
N = 2000. Markers denote averages of |y(t)|2 over five matrix
realizations and 20 initial conditions.
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[34] L. Erdős, T. Krüger and D. Renfrew, Power law decay for sys-
tems of randomly coupled differential equations, SIAM J. Math.
Anal. 50, 3271 (2018).

[35] L. Erdős, T. Krüger and D. Renfrew, Randomly coupled differ-
ential equations with correlations, arXiv:1908.05178 (2019).

[36] B. Mehlig and J. T. Chalker, Statistical properties of eigenvec-
tors in non-Hermitian Gaussian random matrix ensembles, J.
Math. Phys. 41, 3233 (2000).

[37] A. Dembo and A. Montanari, Ising models on locally tree-like
graphs, The Annals of Applied Probability 20, 565-592 (2010).

[38] A. Dembo and A. Montanari, Gibbs measures and phase transi-
tions on sparse random graphs, Brazilian Journal of Probability
and Statistics 24, 137-211 (2010).

[39] S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, Giant
strongly connected component of directed networks, Phys. Rev.
E 64, 025101 (2001).

[40] M .E. J. Newman, S. H. Strogatz, and D. J. Watts, Random
graphs with arbitrary degree distributions and their applica-
tions, Phys. Rev. E 64, 026118 (2001).

[41] F. L. Metz, I. Neri and T. Rogers, Spectral Theory of Sparse
Non-Hermitian Random Matrices, J. Phys. A: Math. Theor. 52,

434003 (2019).
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