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Spectra of sparse regular graphs with loops
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We derive exact equations that determine the spectra of undirected and directed sparsely con-
nected regular graphs containing loops of arbitrary length. The implications of our results to the
structural and dynamical properties of networks are discussed by showing how loops influence the
size of the spectral gap and the propensity for synchronization. Analytical formulas for the spectrum
are obtained for specific length of the loops.
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Networks have emerged as a unified framework to
study complex problems in disciplines ranging from
physics, biology, information theory, chemistry to tech-
nological and social sciences [1]. Some notable exam-
ples are the backbone of the Internet, which consists of
routers connected by physical links, and the metabolism
of the cell, represented as a tripartite network of metabo-
lites, reactions and enzymes. As many seemingly un-
related problems are modeled by networks, it is crucial
to understand how the topology of networks influences
the processes governed on them. The efficiency of error-
correcting codes and communication networks [2, 3], the
propensity for synchronization [4, 5] and the mixing times
of search algorithms [6], among others, are unveiled from
a spectral analysis, i.e. from a study of the adjacency
matrix and the Laplacian of the network [7].

A widespread theoretical approach consists in mod-
eling real-world networks by sparsely connected random
graphs [8], which have a local tree-like structure and thus
a small number of short loops. The Kesten-McKay law

[9] for the spectrum of sparse regular graphs is a rare
example of an analytical solution for the spectral density
and shows that regular graphs have a large spectral gap,
implying many optimal structural properties [3]. Spec-
tral analyzes of irregular sparse random graphs such as
Erdös-Rényi graphs [10, 11], scale-free graphs and small-
world systems have recently been considered [12].

However, Bravais lattices and real-world networks,
such as the Internet and metabolic networks, exhibit a
large number of undirected and directed short loops [13],
while other examples like power grids and neural net-
works are under-short looped, i.e. they have less short
loops than their corresponding random graph models
[14]. To study the effect of loops on structural and dy-
namical properties of complex networks we consider the
Husimi graph [15] (also called Husimi cactus), which is
built out of randomly drawn short loops. The Husimi
graph allows for a detailed spectral analysis as a function
of the loop length, due to its exactly solvable nature. To
our knowledge, results for the spectrum of graphs with
loops are scarce, apart from the analytical formula for
the triangular Husimi graph [16].

In this letter we present a systematic study of the spec-
tra of regular Husimi graphs containing undirected or
directed edges, going beyond previous studies on local
tree-like networks without short loops. We analyze the
influence of loops on some important network properties:
the size of the spectral gap and the stability of synchro-
nized states. The simplicity and exactness of our equa-
tions, confirmed by direct diagonalization methods, leads
to accurate results for arbitrary loop lengths and allows
for an extension of the Kesten-McKay law to triangu-
lar and square undirected Husimi graphs as well as to
directed regular graphs without short loops.

FIG. 1. Local tree-like structure of a (3, 2)-directed and a
(4, 2)-undirected regular Husimi graph. The average path
length between two nodes is of order O(lnN).

Sparse regular graphs with loops We consider the en-
semble of (ℓ, k)-regular (un)directed Husimi graphs con-
taining N vertices or nodes. Each vertex is incident to
k > 1 loops composed of ℓ nodes, with k and ℓ indepen-
dent of N . The indegree and outdegree of any node are
equal to each other, and given by 2k or k in the case of
undirected or directed Husimi graphs, respectively. For
N → ∞ the graphs have a local tree-like structure on the
level of loops, illustrated in figure 1 for triangular (ℓ = 3)
and square (ℓ = 4) Husimi graphs. The model allows
to interpolate between ℓ = 2 and ℓ → ∞, both cases
representing situations where short loops are absent.
We study the spectral density of the N ×N adjacency

matrix J for N → ∞, which is trivially related to the
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spectrum of the Laplacian matrix in the case of regular
graphs. The matrix element Jij assumes 1 if there is
a directed edge from node i to node j, and zero oth-
erwise. Denoting the eigenvalues of a given instance
of J as {λi}i=1,...,N , the spectral density is defined as

ρ(λ) ≡ limN→∞
1

N

∑N
i=1

δ(λ−λi). The matrix J is sym-
metric or asymmetric depending whether the graph is
undirected or directed, respectively. The eigenvalues are
real in the former case and complex in the latter. The
local tree-like structure shown in figure 1 allows to cal-
culate ρ(λ) exactly for N → ∞.
Spectra of undirected Husimi graphs The resolvent

G(z) of J is defined through G(z) ≡ (z − J)−1,
where the complex variable z = λ − iǫ contains a
regularizer ǫ. The spectrum is extracted from the
diagonal components of G(z) according to ρ(λ) =
limN→∞,ǫ→0+(πN)−1ImTrG(λ− iǫ).
Due to the absence of disorder, a closed expression can

be derived for the diagonal elements Gii(z) = G(z), ∀ i.
For graphs without short loops, either one writes Gii(z)
as the variance of a Gaussian function and uses the cavity
method (or the replica method) [10], or one uses repeat-
edly the Schur-complement formula and the local conver-
gence of graphs to a tree [11]. Generalizing these meth-
ods to Husimi graphs [17], we have derived the following
equation for ρ(λ)

ρ(λ) =
1

π
lim
ǫ→0+

Im[z − kGs]
−1 , (1)

where Gs solves

Gs = J
T
s

[

(

z − (k − 1)Gs

)

Iℓ−1 −Lℓ−1 −L
T
ℓ−1

]−1

Js , (2)

with Iℓ−1 the (ℓ−1)×(ℓ−1) identity matrix, Lℓ−1 the (ℓ−
1)-dimensional matrix with elements [Lℓ−1]ij = δi,j−1,
and JTs the (ℓ−1)-dimensional vector JTs = (1 0 . . . 0 1).
For ℓ = 2, the solution of eq. (2) yields the Kesten-McKay
law [9], where ρ(λ) takes the form

ρ(λ) =
k

2π

√

4(k − 1)− λ2

k2 − λ2
(3)

for |λ| < 2
√
k − 1, and zero otherwise. For ℓ > 2, we

have inverted the matrix in eq. (2) [19], leading to

Gs =
2αℓ−2 + 2

αℓ−1

, (4)

where the coefficients α2, . . . αℓ−1 follow from the recur-
rence relation αi = α1αi−1 − αi−2, with α0 = 1 and
α1 = z − (k − 1)Gs. Equation (4) leads to a polyno-
mial in the variable Gs and can be solved analytically for
smaller values of ℓ, extending the Kesten-McKay law to
regular graphs containing short loops. For larger values
of ℓ a straightforward numerical solution can be obtained,
giving sharp results for ρ(λ). Equation (4) is one of the

main results of our work, allowing to compute exactly
the spectrum for increasing values of ℓ.
For ℓ = 3 we recover the analytical expression for ρ(λ)

presented in [16]. For ℓ = 4 eq. (4) becomes a cubic
polynomial with discriminant

D(λ) = −2

3
λ4 − λ2

3

(

k2 − 22k + 13
)

+
8

3
(k − 2)3 . (5)

Defining the functions s±(λ) = 9λ(k+1)−λ3±9
√

D(λ)

and q±(λ) = s
1/3
+ ± s

1/3
− , the spectrum of square Husimi

graphs reads

ρ(λ) =
6
√
3 k (k − 1) q−(λ)

π
[

2(k − 3)λ+ k q+(λ)
]2

+ 3 π k2 q2−(λ)
(6)

for D(λ) > 0, and ρ(λ) = 0 otherwise. The edges of ρ(λ)
solve the equation D(λ) = 0. The analytic expression for
some higher values of ℓ is given elsewhere [17].
In figure 2 we compare direct diagonalization results

of finite matrices with the solution to eq. (4), for k = 2
and several values of ℓ. The agreement is excellent, fol-
lowing from the exactness of eq. (4) for N → ∞. When
rescaling the matrix elements Jij → Jij/

√
2k − 1 we find

analytically the convergence of ρ(λ) to the Wigner semi-
circle law for k → ∞ and arbitrary ℓ [18]. Interestingly,

FIG. 2. Spectrum of (ℓ, k) undirected Husimi graphs with
k = 2 and Jij → Jij/

√
2k − 1, obtained by solving eqs. (1)

and (4). The symbols are direct diagonalization results of
adjacency matrices of size N = 104. The spectrum of the two-
dimensional square Bravais lattice and the Kesten-McKay law
are presented for comparison.

the spectrum of a square Husimi graph exhibits a strik-
ing similarity with the spectrum of the two-dimensional
square Bravais lattice [20], with the appearance of a
power-law singularity at λ = 0 with ρ(λ) ∼ |λ|−1/3. In
the case of the square Bravais lattice, the spectral density
contains a Van Hove singularity at λ = 0, with a logarith-
mic divergence. Our results thus suggest that Van Hove
singularities are related to the local neighborhoods and
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not to the dimensional nature of lattices [20]. For ℓ → ∞,
the spectrum converges to the Kesten-McKay law with
degree 2k [9], as illustrated in figure 2 for ℓ = 10. There-
fore, loops composed of ten nodes can be neglected and
the graph can be considered locally tree-like [10, 11].
Spectra of directed Husimi graphs In the case of di-

rected Husimi graphs, the density of states ρ(λ) at a
certain point λ = x + iy of the complex plane can
be written as ρ(λ) = limN→∞(Nπ)−1∂∗TrG(λ), where

∂∗ = 1

2

(

∂
∂x + i ∂

∂y

)

and G(λ) = (λ − J)−1. The opera-

tion (·)∗ denotes complex conjugation. Due to the non-
analytic behavior of Gii(λ) in the complex plane [21], it
is convenient to define the 2N × 2N block matrix [22]

Hǫ(λ) =

(

ǫIN −i(λ− J)
−i(λ∗ − J

T ) ǫIN

)

. (7)

TheN×N lower-left block of limǫ→0+ H
−1
ǫ (λ) is precisely

the matrix G(λ). Thus, the problem reduces to cal-
culating the matrix elements Gj(λ, ǫ) =

[

H
−1
ǫ (λ)

]

j+N,j

(j = 1, . . . , N), from which the spectrum is determined

according to ρ(λ) = − i
Nπ limN→∞,ǫ→0+

∑N
j=1

∂∗Gj(λ, ǫ).

By representing
[

H
−1
ǫ (λ)

]

j+N,j
as a Gaussian integral

one can generalize the cavity method, as developed for
sparse non-Hermitian random matrices [22], to calculate
the spectrum of directed Husimi graphs [17]. Due to the
absence of disorder we have that Gj(λ, ǫ) = G(λ, ǫ), ∀ j,
and ρ(λ) is given by

ρ(λ) =
1

iπ
lim
ǫ→0

∂∗ [Sǫ(λ) + kGA]
−1

21
, (8)

where Sǫ(λ) = [ǫI2 − i (xσx − yσy)] and (σx, σy) are
Pauli matrices. For ℓ > 2, the two-dimensional matrix
GA solves the equation

GA = JTA

[

(

Sǫ(λ) + (k − 1)GA

)

⊗ Il−1

+ iJ ⊗ Lℓ−1 + iJ T ⊗ L
T
ℓ−1

]−1

JA , (9)

where JTA is the 2 × 2(ℓ − 1) block matrix JTA =
(J 0 . . . 0 J T ), with J = 1

2
(σx + iσy). The derivative

of eq. (9) yields an equation in ∂∗
GA, which has to be

solved together with (8) to find ρ(λ). Equation (9) al-
lows to derive sharp numerical results for the spectrum
of directed Husimi graphs as a function of ℓ.
In figure 3 we present the spectrum ρ(λ) for ℓ = 3 and

k = 2, comparing the solution to eqs. (8-9) with direct
diagonalization results. The agreement is excellent. A
prominent feature of ρ(λ) is the ℓ-fold rotational symme-
try, due to the transformation properties of GA under
rotations of 2π/ℓ. By rescaling Jij → Jij/

√
k − 1, we

find analytically the convergence of ρ(λ) to Girko’s cir-
cular law for k → ∞ and arbitrary ℓ [18].
Analogously to undirected Husimi graphs, ρ(λ) con-

verges to the spectrum of a directed regular graph with-
out short loops for ℓ → ∞. In this case, we find a re-
markable extension of the Kesten-McKay law, Eq. (3),
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FIG. 3. Spectrum of directed Husimi graphs with ℓ = 3 and
k = 2, obtained from eqs. (8-9). Inset (a) shows three cuts
along the real direction (red curves), together with direct di-
agonalization results (symbols) obtained from an ensemble of
3× 104 matrices of size N = 103. Inset (b) shows theoretical
results for the boundary of ρ(λ) for ℓ = 3 and ℓ = 6 (red
curves). The number of corners in each boundary is equal to
the value of ℓ and the blue dashed curve corresponds to the
circle |λ|2 = k, for ℓ → ∞. For comparison, direct diagonal-
ization results are also shown in grey scale for ℓ = 3.

to directed graphs, where ρ(λ) takes the form

ρ(λ) =
k − 1

π

(

k

k2 − |λ|2
)2

, (10)

for |λ|2 < k, and zero otherwise. A comparable equation
appeared in [23], but with a different support of ρ(λ).
In inset (b) of figure 3 we plot the boundary of ρ(λ)

for k = 2 and increasing values of ℓ. In accordance with
eq. (10), the boundary converges to the circle |λ|2 = k in
the limit l → ∞. For ℓ = 10 we have obtained numer-
ically that ρ(λ) is given approximately by eq. (10) and
the graph becomes locally tree-like [22].
Structural and dynamical properties Let us order the

eigenvalues of a regular undirected Husimi graph as λ1 <
λ2 < · · · < λN , where λN = 2k. The spectral gap g and
the eigenratio Q are, respectively, defined by g ≡ (λN −
λN−1)/2k and Q ≡ (λN−λ1)/(λN−λN−1). Analogously,
for regular directed Husimi graphs, the eigenvalues can
be ordered according to their real parts Reλ1 < Reλ2 <
· · · < ReλN , with ReλN = k. In this case, the spectral
gap g and the eigenratio Q are given by g ≡ (ReλN −
ReλN−1)/k and Q ≡ (ReλN −Reλ1)/(ReλN −ReλN−1).
The spectral gap g controls the speed of convergence to

the stationary state of diffusion processes on the graph
[1]. Designing communication networks with a large g
is known to be important due to improved robustness
and communication properties [2, 3], for undirected net-
works. The eigenratio Q measures the propensity for
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synchronization in networks of oscillators [4, 5]. A lin-
ear stability analysis shows that synchronized states are
more stable for smaller values of Q.
Figure 4 depicts g and Q as functions of ℓ for reg-

ular Husimi graphs, showing that g increases while Q
decreases for increasing values of ℓ. For undirected
Husimi graphs, g and Q converge, respectively, to (k −√
2k − 1)/k and 2k/(k −

√
2k − 1) as ℓ → ∞, consis-

tent with the Alon-Boppana bound for the second largest
eigenvalue [24]. For directed Husimi graphs g and Q con-
verge to (k −

√
k)/k and 2k/(k −

√
k), respectively. In

summary, short loops have a negative influence on the
synchronization properties and on the size of the spectral
gap, which is more pronounced at low connectivities.

FIG. 4. Spectral gap g and eigenratio Q of Husimi graphs as
functions of ℓ for different values of k, with the asymptotic
behavior for ℓ → ∞ indicated by solid lines.

Conclusions We have determined the spectrum of
sparse regular random graphs with short loops through a
set of exact equations, including extensions of the Kesten-
McKay law to triangular and square undirected Husimi
graphs as well as to directed regular graphs without short
loops. We find that short loops in directed and undi-
rected networks have a negative influence on the stability
of synchronized states, they also worsen the communica-
tion properties due to a decrease of the spectral gap.
Our spectral results make the absence of loops in net-
work construction apparent [5], while neural networks are
under-short looped [14]. For the square Husimi graph we
recover a singularity at the origin, which is also present
in a square Bravais lattice. Overall, we find that the
spectra of Bravais lattices are similar to the spectra of
Husimi graphs with suitable neighborhoods, indicating
that Husimi graphs serve as good toy models for Bra-
vais lattices. Our results on spectra of sparse random
matrices are of wide interest to diverse fields including
the study of Markov chains [25], dynamics of spin-glasses
[26], etc. Since our work is mainly based upon the cavity
method, it allows for an extension to e.g. irregular graphs
with loops [10] and eigenvector localization studies [27].
FLM thanks Reimer Kühn and Isaac Pérez Castillo
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A. -L. Barabási and T.Vicsek, Phys. Rev. E, 64, 026704
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